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a b s t r a c t

The problem of modeling earthquake ground motions as design inputs for multi-degree-

of-freedom inelastic structures is studied. The earthquake acceleration is expressed as a

Fourier series modulated by an envelope function. The coefficients of the series

representation are calculated such that the structure inelastic deformation is

known characteristics of recorded earthquakes such as upper bounds on the energy and

peak values of the ground acceleration, velocity and displacement and upper and lower

limits on the Fourier spectra of the ground acceleration. The material stress–strain

behavior is modeled using bilinear and elastic–plastic relations. The resulting nonlinear

optimization problem is solved by using the sequential quadratic optimization method.

Issues related to various forms of energy dissipated by the inelastic structure are

explored. The study also examines the effect of nonlinear damping models and the

influence of the strain hardening ratio (ratio of the post-yield stiffness to the pre-yield

stiffness) on the derived optimal earthquake and associated inelastic deformation. The

formulation is demonstrated for a two-storey inelastic building frame with nonlinear

damping.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The earthquake loading in a given region is related to its probable intensity and likelihood of occurrence which, in turn,
depends on the region seismicity. Earthquake hazard and regional seismicity, in turn, are related to the seismotectonics or
plate tectonics of that region. Heat loss from the earth interior drives the plate tectonic engine, forcing more than a dozen
large rigid plates to move around the earth surface, grinding past each other, forming earthquakes. The study of
seismotectonics is in general concerned with understanding what controls surface deformation that produces earthquakes.
Specifically, seismotectonics studies deal with understanding the distribution of earthquakes in space, time and size. The
study of seismotectonics is beyond the scope of this paper, and, further details can be found in Refs. [1,2]. The framework
adopted in this paper for modeling earthquake loads for inelastic structures belongs to the class of engineering models that
aim to replicate gross features of recorded ground motions.

The modeling of earthquake ground motions as design inputs for engineering structures has received significant
research attention worldwide for the last five decades or so [3]. However, the high level of uncertainty associated with the
earthquake phenomenon and severe damages caused by strong motion earthquakes (e.g., San Fernando, 1971, Hyogoken-
Nanbu, 1995 and the more recent 2008 China earthquake) pose a significant challenge for structural engineers and
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researchers to mitigate the disaster and risk caused by earthquake ground motions. It is, thus, essential to develop robust
methods for seismic-resistant design of structures. The specification of accurate and reliable design earthquake loads that
are representative of the destructive potential of the ground motion at a given site is the first step towards achieving this
goal. Earthquake loads are specified as design inputs for structures in terms of design or hazard response spectra of the site,
the time history of the ground acceleration or by using the method of random vibrations. The method of seismic critical
excitation has been established during the last four decades as a counterpart to these methods. In this method, the worst
possible future earthquake is derived by using inverse dynamic analysis and optimization techniques such that the
structure performance is minimized, and at the same time, the earthquake ground motion satisfies known features of
recorded earthquakes. Moustafa [4] and Takewaki [5] provided a comprehensive review on this subject. This method relies
on the fact that, for many parts of the world, available data on strong ground motions is either inhomogeneous or
insufficient. The method relies also on the high level of uncertainty associated with earthquake occurrence and on the
uncompromised safety of lifeline and important structures (e.g., nuclear power plants, electric power, gas and water
networks, chemicals and water storage tanks).

As is well known, the inclusion of material nonlinearity in earthquake-resistant design of structures is of central
importance in earthquake engineering. It is, thus, of interest to investigate the development of this method to structures
deforming into the inelastic stage. This is particularly true when dealing with response analysis of structures driven by
extreme loads as is the case with critical earthquake loads.

While the modeling of critical earthquake loads for linear structures has been widely studied, the problem of modeling
critical earthquake excitations for nonlinear structures has been studied to a very limited extent in the existing literature.
Iyengar [6] derived critical earthquake inputs for Duffing oscillators under a constraint on the input energy. Drenick [7]
showed that the critical excitation for a nonlinear system is the impulse response function of the linearized system
reversed in time. Philippacopoulos and Wang [8] established critical inelastic response spectra using past recorded
accelerograms as basis functions for the critical input. The modeling of critical excitations for elastic–plastic and hysteretic
single-degree-of-freedom (SDOF) systems using calculus of variations was carried out by Westermo [9]. He showed that
the critical inputs for linear systems are harmonic while those for inelastic systems are not harmonic. The critical
excitations computed in these studies, however, do not possess realistic characteristics of recorded ground motions, and,
thus are not realistic models for earthquake loads. Pirasteh et al. [10] modeled critical seismic inputs for inelastic frame
structures by maximizing an approximate function for the inelastic energy of the structure. Recently, Takewaki [11,12]
developed critical power spectral density functions for SDOF and multi-degree-of-freedom (MDOF) elastic–plastic
buildings using statistical linearization. Abbas and Manohar [13,14] developed a reliability-based framework for computing
random critical earthquake loads for nonlinear and parametrically excited structures by maximizing the structure’s failure
probability or the reliability index. This approach combines methods of structural reliability analysis, response surface
modeling and nonlinear programming in computing seismic inputs for structures having cubic force–displacement
relations. More recently, Abbas [15] derived critical earthquake inputs for SDOF elastic–plastic structures by maximizing
the ductility ratio.

This paper extends the previous study by this author [15] on modeling critical earthquake loads for SDOF elastic–plastic
structures to MDOF elastic–plastic and bilinear structures. The study also explores issues related to energy dissipated by
inelastic structures. The earthquake load is expressed in terms of a Fourier series modulated by an envelope function. These
coefficients are computed such that the structure inelastic deformation is maximized subjected to predefined constraints.
These constraints include upper bounds on the earthquake energy and peak values of ground acceleration, velocity and
displacement and upper and lower limits on the Fourier spectra of the ground acceleration. The resulting nonlinear
optimization problem is solved by using the sequential quadratic optimization method. Numerical illustrations on
modeling critical earthquakes for two-storey inelastic building with hysteretic damping are provided. Section 2
demonstrates the dynamic analysis for MDOF inelastic structures. The formulation for modeling critical earthquake
inputs for inelastic structures is developed in Section 3 and various energy forms dissipated by inelastic structures are
derived in Section 4. The proposed formulation is demonstrated for a two-storey frame building in Section 5.
2. Dynamic analysis of MDOF inelastic structures under earthquake ground motion

The equation of motion for an N-nonlinear MDOF structure driven by a single component of earthquake acceleration
€xgðtÞ is given by [1,16,17]:

M €XðtÞ þ C _XðtÞ þ FsðtÞ ¼ PðtÞ ¼ �Mf1g€xgðtÞ (1)

where M and C are the mass and damping matrices of the structure, respectively, FsðtÞ the vector of hysteretic restoring
forces, {1} is a vector of ones, X(t) is the structure displacement vector and dot indicates differentiation with respect to
time. Note that, for nonlinear damping models, the damping matrix C is a function of the deformed shape of the structure.
Fig. 1 depicts the relationship between the deformation and the hysteretic restoring force for bilinear and elastic–plastic
materials. The incremental form of Eq. (1) can be written as

MD €Xþ CD _Xþ KsDX ¼ DP ¼ �Mf1g½€xgðtkþ1Þ � €xgðtkÞ� (2)
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Fig. 1. Force–displacement relation for nonlinear materials: (a) bilinear model and (b) elastic–plastic.
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where

D €X ¼ €Xðtkþ1Þ �
€XðtkÞ; D _X ¼ _Xðtkþ1Þ �

_XðtkÞ; DX ¼ Xðtkþ1Þ � XðtkÞ (3)

and Ks is the stiffness corresponding to the displacement from X(tk) to X(tk+1). We consider the case where the solution for
the response is obtained by using the Newmark b-method. Accordingly, the velocity and displacement responses at time
tk+1 are given as

_Xkþ1 ¼
_Xk þ ð1� dÞ €XkDt þ d €Xkþ1Dt

Xkþ1 ¼ Xk þ
_XkDt þ ð12� aÞ

€XkðDtÞ2 þ a €Xkþ1ðDtÞ2 (4)

where d and a are the parameters of the Newmark b-method and Dt ¼ tkþ1 � tk is the time step. Eq. (4) can be written in
an incremental form as

D _X ¼ ð1� dÞ €XkDt þ d €Xkþ1Dt

DX ¼ _XkDt þ ð12� aÞ
€XkðDtÞ2 þ a €Xkþ1ðDtÞ2 (5)

Substituting Eq. (5) into Eq. (2) we get

MD €Xþ C½ð1� dÞ €XkDt þ d €Xkþ1Dt� þ Ks½
_XkDt þ ð12� aÞ

€XkðDtÞ2 þ a €Xkþ1ðDtÞ2� ¼ DP (6)

Substituting €Xkþ1 ¼
€Xk þ D €X in the above equation leads to

MD €Xþ ð1� dÞDtC €Xk þ dDtC €Xk þ dDtCD €XþDtKs
_Xk þ ð

1
2� aÞðDtÞ2Ks

€Xk

þ aðDtÞ2Ks
€Xk þ aðDtÞ2KsD €X ¼ DP (7)

Collecting similar terms and simplifying, it follows that:

½Mþ dDtCþ aðDtÞ2Ks�D €Xþ DtC €Xk þDtKs
_Xk þ

1
2ðDtÞ2Ks

€Xk ¼ DP (8)

Solving for D €X we get

D €X ¼ ½Mþ dDtCþ aðDtÞ2Ks�
�1½DP� DtC €Xk � DtKs

_Xk �
1
2ðDtÞ2Ks

€Xk� (9)

Eq. (9) provides the solution for D €X and using Eq. (5) it is possible to calculate the quantities DX and D _X. Subsequently,
using the relations Xkþ1 ¼ Xk þ DX and _Xkþ1 ¼

_Xk þ D _X the quantities Xkþ1 and _Xkþ1 can be determined. To represent the
solution in a matrix form, Eq. (9) can be recast as

D €X ¼ B�1DP� ½DtB�1Ks�
_Xk � ½DtB�1Cþ 1

2ðDtÞ2B�1Ks�
€Xk; B ¼Mþ dDtCþ aðDtÞ2Ks (10)

From Eq. (10), the acceleration €Xkþ1 is given as

€Xkþ1 ¼
€Xk þD €X ¼ €Xk þ B�1DP� ½DtB�1Ks�

_Xk � ½DtB�1Cþ 1
2ðDtÞ2B�1Ks�

€Xk

¼ B�1DP� ½DtB�1Ks�
_Xk þ ½I�DtB�1C� 1

2ðDtÞ2B�1Ks�
€Xk (11)

Substituting Eqs. (11) into Eqs. (5) and making use of Eq. (3), we get

Xkþ1

_Xkþ1

€Xkþ1

8>><
>>:

9>>=
>>; ¼ G

Xk

_Xk

€Xk

8>><
>>:

9>>=
>>;þHDP or qðtkþ1Þ ¼ GqðtkÞ þH½€xgðtkþ1Þ � €xgðtkÞ� (12)
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where

G ¼

I ðDtÞI� aðDtÞ3B�1Ks
1
2ðDtÞ2I� aðDtÞ3B�1C� 1

2aðDtÞ4B�1Ks

0 I� dðDtÞ2B�1Ks DtI� dðDtÞ2B�1C� 1
2dðDtÞ3B�1Ks

0 �DtB�1Ks I�DtB�1C� 1
2ðDtÞ2B�1Ks

2
6664

3
7775; H ¼ �

aðDtÞ2B�1M

dDtB�1M

B�1M

2
64

3
75 (13)

It may be emphasized that the matrices Ks, G and H are functions of time and, thus are computed at each time step. The
matrix Ks is determined based on the deformed history of the structure. In the above formulation a viscous damping model
is considered, and, thus the damping matrix C is constant. Hysteretic nonlinear damping can be also considered in which
the damping matrix is treated as a variable and is computed at each time step.

It may be also emphasized that the stiffness used in the solution for time step tk+1 is taken as the secant stiffness from
time step tk�1 to tk. To correct this approximation, an iterative procedure for the stiffness Ks is performed where the initial
stiffness is replaced by Ks

(1) , Ks
(2), y, Ks

(n) until a convergence criterion on Ks is achieved. Finally, it may be also noted that
the above formulation for inelastic response analysis is used as a subroutine to derive critical earthquake loads. The next
section develops the modeling of critical earthquake loads for inelastic MDOF structures.

3. Critical earthquake load inputs for MDOF inelastic structures

The formulation for deriving critical earthquake excitations for MDOF inelastic structures is developed in this section.
The ground acceleration appearing in the right side of Eq. (12) is represented as a product of a Fourier series and an
envelope function:

€xgðtÞ ¼ eðtÞ
XNf

i¼1

Ri cosðoit �jiÞ (14)

Here, Ri and ji are 2Nf unknown amplitudes and phase angles, respectively, and oi; i ¼ 1;2; . . . ;Nf are the frequencies
presented in the ground acceleration which are selected to span satisfactory the frequency range ðo0;ocÞ. The envelope
function eðtÞ is taken as [18]:

eðtÞ ¼ A0½expð�a1tÞ � expð�a2tÞ� (15)

where A0 is a scaling constant and the parameters a1;a2 impart the transient nature to €xgðtÞ. In constructing critical seismic
inputs, the envelope function is taken to be known. Additionally, the information on energy E, peak ground acceleration
(PGA) M1, peak ground velocity (PGV) M2, peak ground displacement (PGD) M3, upper bound Fourier amplitude spectra
(UBFS) M4ðoÞ and lower bound Fourier amplitude spectra (LBFS) M5ðoÞ are also taken to be available which enables the
formulation of the following constraints:

Z 1
0

€x2
g ðtÞdt

� �1=2

pE

max
0oto1

j€xgðtÞjpM1

max
0oto1

j_xgðtÞjpM2

max
0oto1

jxgðtÞjpM3

M5ðoÞpjXgðoÞjpM4ðoÞ (16)

Here, XgðoÞ is the Fourier transform of €xgðtÞ. It may be noted that the constraint on the earthquake energy E is related to the
Arias’ intensity measure [19]. On the other hand, the constraints on upper and lower bound Fourier amplitude spectra are
aimed to replicate the frequency content and amplitude of past recorded ground motion to the optimal earthquake
acceleration. In other word, these constrains try to avoid the energy concentration of the ground acceleration at a narrow
frequency range. To proceed further, the ground velocity and displacement are computed from Eq. (14) as follows:

_xgðtÞ ¼
XNf

i¼1

Ri

Z t

0
eðtÞ cosðoit�jiÞdtþ C1

xgðtÞ ¼
XNf

i¼1

Ri

Z t

0
eðtÞðt � tÞ cosðoit �jiÞdtþ C1t þ C2 (17)
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The constants C1 and C2 are determined using the conditions xgð0Þ ¼ 0, limt!1 _xgðtÞ ! 1 [20], thus:

C2 ¼ 0; C1 ¼ �
XNf

i¼1

Ri

Z 1
0

eðtÞ cosðoit�jiÞdt (18)

The constraints listed in Eq. (16) can be expressed in terms of the unknown variables Ri;ji; i ¼ 1;2; . . . ;Nf as follows:

A2
0

XNf

m¼1

XNf

n¼1

RmRn

Z 1
0
½expð�a1tÞ � expð�a2tÞ�2 cosðomt �jmÞ cosðont �jnÞdt

2
4

3
5

1=2

pE

max
0oto1

A0½expð�a1tÞ � expð�a2tÞ�
XNf

n¼1

Rn cosðont �jnÞ

������
������pM1

max
0oto1

A0

XNf

n¼1

Z t

0
Rn½expð�a1tÞ � expð�a2tÞ� cosðont�jnÞdt

������
� A0

XNf

n¼1

Z 1
0

Rn½expð�a1tÞ � expð�a2tÞ� cosðont�jnÞdt

������pM2

max
0oto1

A0

XNf

n¼1

Z t

0
Rn½expð�a1tÞ � expð�a2tÞ�ðt � tÞ cosðont�jnÞdt

������
� A0t

XNf

n¼1

Z 1
0

Rn½expð�a1tÞ � expð�a2tÞ� cosðont�jnÞdt

������pM3 (19)

M5ðoÞp A0

XNf

n¼1

Z 1
0

Rnfexp½�ða1 þ ioÞt� � exp½�ða2 þ ioÞt�g cosðont �jnÞdt

������
������pM4ðoÞ; i ¼

ffiffiffiffiffiffiffi
�1
p

To quantify the constraints quantities E, M1, M2, M3, M4ðoÞ and M5ðoÞ it is assumed that a set of Nr earthquake records
denoted by €vgiðtÞ; i ¼ 1;2; . . . ;Nr are available for the site under consideration or from other sites with similar geological soil
conditions. The values of energy and peak values of acceleration, velocity and displacement are obtained for each of these
records. The highest of these values across the ensemble of the records are taken to be the respective estimates of E, M1, M2

and M3. The set of available records are further normalized such that the energy of each record is set to unity, and these
normalized records are denoted by f €�vgig

Nr
i¼1

. The bounds M4ðoÞ and M5ðoÞ are obtained as:

M4ðoÞ ¼ E max
1pipNr

j �VgiðoÞj; M5ðoÞ ¼ E min
1pipNr

j �VgiðoÞj (20)

The function �VgiðoÞ; i ¼ 1;2; . . . ;Nr denotes the Fourier transform of the ith normalized accelerogram €vgiðtÞ which are
computed using the fast Fourier transform. The idea of introducing an upper bound on the Fourier amplitude of the ground
motion has been considered earlier [11,15,21,22]. The lower bound on the Fourier amplitude spectra was considered by
Moustafa [4] and Abbas and Manohar [23]. Furthermore, the assumption on availability of past records is similar to the
assumption made by Drenick [24] who employed past records as basis functions. In this paper, past records are used to
quantify the constraints imposed on the critical ground motion.

It may be emphasized that the framework adopted for modeling the optimal earthquake ground motion in this paper
belongs to the class of engineering models which do not explicitly account for the fault characteristics. The site soil
condition, however, is automatically encapsulated in the set of records adopted in defining the constraints. Specifically, the
constraint quantities E, M1, M2, M3, M4ðoÞ and M5ðoÞ are quantified using past recorded earthquake data at the site or from
other sites with similar geological soil conditions. This approach is consistent with the aspirations of the ground motion
models that are commonly used by engineers, which, aim to replicate some of the gross features of recorded ground
motions, such as, energy, amplitude, frequency content, nonstationarity trend, local soil amplification effects, and duration,
see, e.g., [25–27]. As is well known, recorded ground accelerations contain the most useful information on earthquake
ground motion [3]. It may be emphasized also that the engineering models are usually used when information on the
source characteristics is either not available or limited. Seismological models, on the other hand, are analytical expressions
that are based on attenuation relationships of ground motions which take into account several details, such as, fault
dimension, fault orientation, rupture velocity, earthquake magnitude, stress drop, density of the intervening medium, local
soil condition and source to site distance. These models have been developed in the literature, mainly by seismologists, see,
e.g., [28–31]. To use these models, a host of parameters need to be defined and the success of the model depends on how
these parameters are defined. Critical earthquake loads can be also formulated by using attenuation models in which the
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model parameters can be optimized to obtain the least favorable conditions. In this case, the class of admissible functions
to be used in computing the optimal excitations becomes further constrained by the model adopted. The approach
employed in this study, in this sense, is nonparametric in nature.

Finally, the problem of deriving critical earthquake loads for inelastic structures can be posed as determining the
optimization variables y ¼ fR1;R2; . . . ;RNf

;j1;j2; . . . ;jNf
gt such that the structure inelastic deformation is maximized

subjected to the constraints listed in Eqs. (19). The solution to this nonlinear constrained optimization problem is tackled
by using the sequential quadratic programming method [32]. The optimization algorithm starts from an initial guess for
the optimization variables y and performs a sensitivity analysis for each iteration searching for new optimal values for y.
The optimization converges to the optimal solution y* when convergence criteria on the objective function f and on the
optimization variables y are satisfied, namely:

jf j � f j�1jp�1; jyi;j � yi;j�1jp�2 (21)

Herein, j is the iteration number, i the number of the optimization variable and �1; �2 are small quantities to be specified.
The structure inelastic deformation is estimated by using the Newmark b-method as demonstrated in Section 2. The
resulting nonlinear constrained optimization problem is tackled by using the sequential quadratic optimization algorithm
‘fmincon’ of the Matlab optimization toolbox [33].

The details of the procedure involved in the computation of the optimal earthquake and the associated inelastic
deformation can be summarized as follows:
1.
 Define the structure parameters M, C and K, the initial yield displacement in tension and compression (xyt, xyc) and
associated yield strength.
2.
 Set the initial conditions Xð0Þ; _Xð0Þ and compute the initial acceleration €Xð0Þ.

3.
 Perform free vibration analysis, select the time step Dt and define the parameters of the Newmark b-method ðd;aÞ.

4.
 Specify initial guess for the optimization variables y ¼ ½R1;R2; . . . ;RNf

;f1;f2; . . . ;fNf
�t and define €xgðtÞ.
5.
 Call the response analysis subroutine to calculate the structure’s maximum response. This subroutine performs the
following steps:
(a) At each point of time tk use the value of the parameter KEY(tk) to establish the elastic or inelastic state of each

member of the structure as follows:
� The ith member behaves elastic when KEY(k,i) ¼ 0.
� The ith member behaves inelastic in tension when KEY(k,i) ¼ 1.
� The ith member behaves inelastic in compression when KEY(k,i) ¼ �1.

(b) Use the value of KEY(tk) for each member to define the stiffness matrix Ks.
(c) Quantify the matrices G and H and evaluate the response q(tk) using Eq. (12).
(d) Set the value for the parameter KEY(k+1, i) for each member at tk+1 as follows:
� When the member is behaving elastic at the beginning of the time step (KEY(k, i) ¼ 0) then KEY(k+1,i) ¼ 0 if

xycoxðkþ 1; iÞoxyt , KEY(k+1,i) ¼ 1 if xðkþ 1; iÞ4xyt and KEY(k+1, i) ¼ �1 if xðkþ 1; iÞoxyc .
� When the member is behaving inelastic in tension at the beginning of the time step (KEY(k,i) ¼ 1) then

KEY(k+1,i) ¼ 1 if _xðkþ 1; iÞ40 and KEY(k+1,i) ¼ 0 if _xðkþ 1; iÞo0.
� When the member is behaving inelastic in compression at the beginning of the time step (KEY(k,i) ¼ �1) then

KEY(k+1, i) ¼ �1 if _xðkþ 1; iÞo0 and KEY(k+1,i) ¼ 0 if _xðkþ 1; iÞ40.

6.
 Check if the convergence criteria of Eq. (21) are satisfied. If yes go to step 8 otherwise go to next step.

7.
 Call the Matlab optimization toolbox to generate new values for the optimization variable y and return to step 5.

8.
 Recall the response analysis subroutine. This implies repeating steps (a)–(d) at all time points.

9.
 Compute the optimal solution as f �max ¼ max1pjpNt

jf maxðtjÞj and the associated optimization variables y� ¼ ½A�1;A
�
2; . . . ;

A�Nf
;j�1;j

�
2; . . . ;j

�
Nf
�t .

It is to be noted that the inelastic response analysis routine is built as a subroutine inside the optimization program and
is called at each iteration. Furthermore, the optimization is performed at discrete points of time and the optimal solution
y� ¼ ½A�1;A

�
2; . . . ;A

�
Nf
;j�1;j

�
2; . . . ;j

�
Nf
�t is the one that produces the maximum objective function across all time points. The

optimal earthquake loads are characterized in terms of the critical accelerations and associated inelastic deformation they
produce. In this study, we also characterize critical inputs in terms of different energy forms dissipated by the structure.
The next section demonstrates the quantification of various energy forms dissipated by inelastic structures.

4. Energy dissipated by MDOF inelastic structures

To gain more insights into the nature of optimal earthquake loads computed, different energy forms dissipated by the
inelastic structure are quantified in this section. Several authors have characterized the structure response in terms of
energy dissipated by the structure [34–36]. The input energy to the structure is dissipated by kinetic energy, damping
energy and strain (elastic and plastic) energy. These energy terms can be quantified by integrating the structure equation of
motion. Without loss of generality, consider an N-storey shear building frame. Thus, pre-multiplying Eq. (1) by _X

T
and
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integrating we get Z t

0

_X
T
ðtÞM €XðtÞdtþ

Z t

0

_X
T
ðtÞC _XðtÞdtþ

Z t

0

_X
T
ðtÞFsðtÞdt ¼ �

Z t

0

_X
T
ðtÞMf1g€xgðtÞdt (22)

The right side of the above equation represents the input energy to the structure since ground starts shaking until it comes
to rest. The first energy term of the left side is the relative kinetic energy EK(t) of the masses associated with their motion
relative to the ground and is given as

EK ðtÞ ¼

Z t

0

_X
T
ðtÞM €XðtÞdt ¼ 1

2

XN
i¼1

mi _x
2
i ðtÞ (23)

The second energy term in Eq. (22) is the energy dissipated by damping ED(t) given by

EDðtÞ ¼

Z t

0

_X
T
ðtÞC _XðtÞdt ¼

XN
i¼1

Z t

0
_xiðtÞf DiðtÞdt (24)

For viscous damping models, the above expression reduces to
PN

i¼1

PN
j¼1

R t
0 cij _xiðtÞ_xjðtÞdt. The third term of Eq. (22) is the

sum of the recoverable strain energy Es(t) and the hysteretic cumulative plastic energy dissipated by yielding, EH(t):

EHðtÞ ¼
XN
i¼1

Z t

0
_xiðtÞf siðtÞdt� EsðtÞ (25)

It may be noted that the recoverable strain energy and the kinetic energy vanish by the end of the earthquake duration and
thus the input energy supplied to the structure by the earthquake ground motion is absorbed by the damping and the
hysteretic mechanisms. In the present study, the time-variation of the above energy terms are employed in characterizing
critical earthquake loads and associated structure deformation. The next section provides numerical illustrations for the
formulation developed in this section and the previous two sections.

5. Numerical results and discussions

5.1. Structure considered

The two-storey braced building frame shown in Fig. 2 is considered to demonstrate the formulation developed in the
previous sections. This structure was studied by Hart and Wong [17] for inelastic response analysis. The material behavior
of braces 1 and 2 is taken as bilinear (k2 ¼ gk1) as shown in Fig. 1(a). The mass and initial stiffness matrices of the structure
are given as

M ¼
m1 0

0 m2

" #
; Kel ¼ cos2 y

A1E

L1
þ

A2E

L2
�

A2E

L2

�
A2E

L2

A2E

L2

2
6664

3
7775 (26)

The numerical values of floor masses are taken as m1 ¼ m2 ¼ 1.75�105 kg, the cross-sectional areas of the braces are
A1 ¼ A2 ¼ 6.45�10�4 m2, the Young’s modulus E ¼ 2.59�1011 N/m2, and the strain hardening ratio (i.e., ratio of the post-
yield stiffness to the pre-yield stiffness) g ¼ 0.10. When both braces are behaving elastically, the stiffness matrix Ks ¼ Kel, if
brace 1 yields Ks ¼ K1, if brace 2 yields Ks ¼ K2 and if both braces yield Ks ¼ K12. These matrices are given as

Kel ¼
AE

L
cos2 y

2 �1

�1 1

� �
; K1 ¼

AE

L
cos2 y

ð1þ gÞ �1

�1 1

� �
;

E, A2

E, A1

Brace 2

Brace 1

9.14 m 

9.14 m 

9.14 m

x1

x2m2

m1
fS1 (x1, x1) fS2 (x2, x2)

fD1 (x1, x1) fD2 (x2, x2)
m1 m2

x1 x2
xg (t)

xg (t) xg (t)
�

Fig. 2. (a) Two-storey inelastic building frame and (b) mechanical system.
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Table 1
Information on past recorded ground motions for a firm soil site [37].

Earthquake Richter

magnitude

Source–site

distance (km)

Component PGA (m/s2) PGV (m/s) PGD (m) Energya

(m/s1.5)

Recording

station site

Mammoth lakes 6.2 1.5 W 4.02 0.21 0.05 3.73 Convict

05.25.1980 S 3.92 0.23 0.05 4.01 Greek

Loma prieta 7.0 9.7 W 3.91 0.31 0.07 3.82 Capitola

10.18.1989 4 S 4.63 0.36 0.11 2.61

Morgan hill 6.1 4.5 S60E 3.06 0.40 0.07 2.33 Halls Valley

04.24.1971 S30W 1.53 0.30 0.02 1.64

San Fernando 6.6 27.6 N69W 3.09 0.17 0.04 2.07 Castaic Old

02.09.1971 N21E 2.66 0.28 0.10 2.47 ridge

Parkfield 5.0 9.1 W 2.88 0.44 0.01 1.33 Parkfield

12.20.1994 S 3.80 0.10 0.01 1.74 Fault

Caolinga 6.5 30.1 W 2.83 0.26 0.10 2.67 Cantua

05.02.1983 N 2.20 0.26 0.10 2.14 Creek

Northridge 6.7 5.9 S74E 3.81 0.60 0.12 4.17 Canoga Park

01.17.1994 S16W 3.43 0.34 0.09 3.50

Cape Mendocino 7.0 5.4 W 3.25 0.45 0.15 2.44 Petrolia

general04.25.1992 S 2.89 0.24 0.08 2.31

Westmorland 5.0 6.6 E 4.35 0.33 0.11 3.26 Westmor

04.26.1981 S 3.54 0.44 0.15 3.25 land fire

Imperial valley 6.4 17.4 S45W 2.68 0.22 0.10 2.30 Calexico Fire

10.15.1979 N45W 1.98 0.19 0.15 2.14

a Note that the energy is estimates as E ¼
R1

0
€x2

g ðtÞdt
h i1=2

.
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K2 ¼
AE

L
cos2 y

ð1þ gÞ �g
�g g

" #
; K12 ¼ gKel ¼

AE

L
cos2 y

2g �g
�g g

" #
(27)

The structure is assumed to start from rest (i.e., x1 ¼ x2 ¼ 0, _x1 ¼ _x2 ¼ 0). The first two natural frequencies of the elastic
structure were computed as o1 ¼ 6:18 rad=s and o2 ¼ 16:18 rad=s. A Rayleigh proportional damping C ¼ aMþ bKs with
a ¼ 0.2683, b ¼ 0.0027 is adopted [16]. These values are selected such that the damping ratio in the first two modes is 0.03.
This implies that the damping forces in braces are nonlinear hysteretic functions of the deformed shape of the structure. Let
the yield strain of the braces �y ¼ 0:002 for both tension and compression. The braces will yield at a relative displacement
xy ¼ L�y= cos y ¼ 0:0381 m. Thus, brace 1 yields when jx1j ¼ 0:0381 m and brace 2 yields when jx2 � x1j ¼ 0:0381 m. The
objective function is taken as the inter-storey drift x2 � x1. In the numerical analysis, the parameters of the Newmark
b-method were taken as d ¼ 1=2;a ¼ 1=6 and the time step Dt ¼ 0:005 s.
5.2. Quantification of constraints

A set of 20 earthquake ground motions (Nr ¼ 20) is used to quantify the constraint limits E, M1, M2, M3, M4ðoÞ and
M5ðoÞ [37]. Table 1 summarizes relevant information on each of these records. These records include digitized information
on ground acceleration, velocity and displacement and are measured on firm soil. Based on numerical analysis of these
records the constraints were computed as E ¼ 4.17 m/s1.5, M1 ¼ 4.63 m/s2 (0.47g), M2 ¼ 0.60 m/s and M3 ¼ 0.15 m. The
number of records Nr ¼ 20 was seen to produce considerably smooth upper and lower bounds on the Fourier coefficients of
the ground acceleration. The average dominant frequency of the ground accelerations is seen to be around 1.64 Hz. The
envelope parameters were determined as A0 ¼ 2.17, a1 ¼ 0.13 and a2 ¼ 0.50. The convergence limits �1; �2 were taken as
10�6. The frequency content for €xgðtÞ is taken as (0.1–25) Hz. Additionally, in distributing the frequencies oi; i ¼ 1;2; . . . ;Nf
in the interval ðo0;ocÞ, (Eq. (14)) it was found advantageous to select some of these oi to coincide exactly with the natural
frequencies of the elastic structure and also to place relatively more points within the modal half-power bandwidth. The
convergence criterion for the stiffness Ks (Section 2) is taken as 10�3 N/m and it was observed that Ks converges within
about 5 iterations.

As mentioned earlier, the resulting constrained nonlinear optimization problem is tackled by using the sequential
quadratic optimization algorithm fmincon of the Matlab optimization toolbox [33]. This algorithm requires the specification
of an initial guess for the vector of the optimization variables y. In the numerical calculations, alternative initial starting
solutions, within the feasible region, were examined and it was found that all guesses lead to the same optimal solution. To
select the number of frequency terms Nf a parametric study was carried out and Nf ¼ 51 was found to give satisfactory
results.
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Fig. 5. Critical acceleration €xg ðtÞ for inelastic structure for case 2: (a) time history and (b) Fourier amplitude spectrum.

Table 2
Nomenclature of constraint scenarios considered.

Case Constraints imposed

1 Energy and PGA

2 Energy, PGA, PGV and PGD

3 Energy, PGA and UBFS

4 Energy, PGA, UBFS and LBFS

A. Moustafa / Journal of Sound and Vibration 325 (2009) 532–544540
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Table 3

Inelastic deformation quantities for alternative constraints (g ¼ 0.10, z ¼ 0.03).

Case Dxmax (m) mmax xp (m)

1 0.17 4.51 0.05

2 0.14 3.66 0.03

3 0.11 2.91 0.03

4 0.09 2.42 0.02

Note that Dxmax ¼ maximum inter-storey drift, mmax ¼ maximum absolute ductility ratio and xp ¼ permanent deformation.

A. Moustafa / Journal of Sound and Vibration 325 (2009) 532–544 541
5.3. Results and discussions

The constraint scenarios considered in deriving critical earthquake inputs are listed in Table 2. The numerical results
obtained are presented in Figs. 3–7 and Table 3. The convergence of the objective function for case 4 is shown in Fig. 3(a).
Fig. 3(b) shows the inelastic inter-storey drift normalized to the yield displacement. The time history of the optimal ground
acceleration and associated Fourier amplitude spectrum for the earthquake load for case 1 is shown in Fig. 4. Similar results
for constraint scenarios 2 and 4 are shown in Figs. 5 and 6, respectively. Fig. 7 depicts the hysteretic restoring forces for
braces 1 and 2. The hysteretic energy dissipated by yielding and damping (Eqs. (23)–(25)) are shown in Fig. 8. Note that
these quantities are computed using the horizontal displacements at the floors levels. Based on the extensive numerical
results obtained, the following observations are made:
1.
 It is evident from the numerical results on critical ductility ratio and associated inelastic deformation response that the
time variation of the structure deformation differs from that for the elastic structure. Unlike the elastic system, the
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inelastic system after it has yielded does not oscillate about its initial equilibrium position. Yielding causes the structure
to drift from its initial equilibrium position and the system oscillates around a new equilibrium position until this gets
shifted by another yielding. Accordingly, after the ground stops shaking, the structure comes to rest at a position
different from its initial equilibrium position. In other words, the structure permanent deformation remains after
ground stops shaking. For instance, the permanent displacement of the structure, for case 1, xp ¼ 0.05 m, and for case 4,
xp ¼ 0.02 m.
2.
 The inelastic deformation, hysteretic energy dissipated by the structure and the frequency content of the critical
earthquake are strongly dependent on the constraints imposed (Figs. 4–6). If available information on the earthquake
input is limited to energy and PGA, the critical input is highly resonant and response produced is conservative (Fig. 4 and
Table 3). It was observed that the Fourier amplitudes of the ground acceleration are resonant at two frequencies close to
the elastic structure frequencies (slightly smaller than o1 and o2, see Fig. 4). Additional constraints on UBFS and LBFS
make the critical inputs realistic in terms of the frequency content (€xgðtÞ is rich in frequencies) and inelastic response
they produce. Thus, the maximum ductility ratio m for case 1 is 4.51 while that produced from constraint case 4 is 2.42.
Similarly, the maximum response reduces from 0.17 to 0.09 m when the constraints on UBFS and LBFS are brought in.
Additionally, the critical acceleration possesses a dominant frequency that is close to the average dominant frequency of
past recorded ground motions. The constraints on energy, PGA, PGV and PGD (case 2) were not found to be significant in
producing realistic critical inputs compared to the constraints on UBFS and LBFS, since the Fourier spectrum was overly
conservative. For instance, while the optimization algorithm converges successfully to the optimal solution, the
resulting Fourier spectrum of the ground acceleration were not seen to be realistic. In other words, the acceleration
energy was concentrated at frequencies close to the natural frequencies of the elastic structure leading to ground
motion that is poor in frequency content (see Fig. 5). Similar observations were also remarked for the ground velocity
and displacement.
3.
 The earthquake input energy to the inelastic system is mainly dissipated by yielding and nonlinear damping of the
structure (see Fig. 8). The hysteretic and damping energies are significantly higher than the recoverable strain and
kinetic energy. The kinetic and recoverable strain energies are small and diminish near the end of the ground shaking
(Fig. 8). The energy dissipated by yielding is significantly higher than that dissipated by damping (Fig. 8(a)). It is
observed also that the input energy to the inelastic system differs from that for the elastic system. The repeated yielding
of the inelastic system indicates the level of the structure damage and the associated permanent deformation caused by
the critical earthquake.
4.
 In deriving critical earthquake inputs for the inelastic structure, it was seen that cases 1 and 2 converge more rapidly
compared to cases 3 and 4. This is to be expected given that cases 1 and 2 contain 2 and 4 constraints, respectively. Cases
3 and 4, on the other hand, contain additional constraints on UBFS and LBFS which should be satisfied at discrete
frequency points. It was also observed that the convergence rate of the objective function with respect to the number of
iterations is faster for the elastic structure compared to that of the inelastic structure. Thus, for case 4, the objective
function for the linear case reaches initial convergence to the optimal solution within about 1740 iterations, the
corresponding number of iterations when inelastic behavior is considered is more than 9000. The final convergence of
the objective function for the inelastic system is achieved within about 16300 iterations (see Fig. 3(a)). It was, also,
observed that the CPU time necessary for the convergence of the objective function for the inelastic system is about five
times that for the elastic system.
To examine the effect of the strain hardening ratio (g ¼ k2/k1) on the optimal earthquake acceleration computed, limited
studies were carried out. The value of g was changed and the critical input was determined by solving a new optimization
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problem. Namely, g was taken as 0.10, 0.05, 0.01 and 0. The effect of the decrease in g was not seen to significantly influence
the frequency content of the critical earthquake input. It was observed, however, that the inelastic structure with lower
values of g yields more frequently compared to the same system with larger g values. The cumulative hysteretic energy
dissipated, however, was observed to increase for higher values of g (Fig. 8(b)). This feature is particularly remarkable at the
end of the earthquake duration. It was also observed that results on critical earthquake accelerations from bilinear inelastic
structure with g ¼ 0 are similar to those for the elastic–plastic structure.

It was observed also that the inelastic structure with nonlinear Rayleigh damping dissipates more energy through
damping mechanism compared to the same system with viscous damping. The influence of the variation of the damping
ratio was also studied by varying this quantity. The damping ratio was taken as 0.01, 0.03 and 0.05 and solving a new
optimization problem for each value. The effect of the damping ratio on the critical earthquake was not seen to significantly
influence the frequency content of the earthquake acceleration. It was observed, however, that the ductility ratio for the
structure increases for lower damping ratios. Thus, the ductility ratio decreases to 2.17 when the damping ratio is taken as
0.05 while the ductility ratio increases to 3.14 when the damping ratio is taken as 0.01. It was also observed that inelastic
structure with higher damping ratio dissipates more energy through damping.

As mentioned in the introduction section, the occurrence of earthquake ground motions involves a high level of
uncertainty. In fact, each earthquake brings out new surprises and teaches us new lessons. The main objective beyond the
use of the critical excitation method is to provide robust earthquake loads for seismic-resistant design of lifeline and
important structures. The use of the method becomes of essential importance for structures that need to be constructed at
seismic regions having limited earthquake data, and, also for structures that should remain functional after the earthquake
occurrence (e.g., nuclear power plants, electrical facilities, water and chemicals storage tanks and hospitals). The
earthquake loads derivable using this method are robust since these loads are tailored to produce the highest or the
‘critical’ structural responses (e.g., displacement, stresses, structural failure or damage) among all possible credible loads.
Furthermore, the method provides an answer to the crucial question on the estimation of the worst possible scenario of the
structure under seismic loads. In deed, the answer to this question represents one of the basic design concerns for
structural engineers. Therefore, the method can be used by the structural engineer at preliminary design stages for
prescribing robust earthquake loads on important and lifeline structures. The method can also be used for the seismic
safety assessment of the structure by defining a failure criterion using a limit-state function, in terms of the structural
capacity and associated quantity demanded by the critical earthquake, see, e.g., [13,14]. Recent developments of the
method include the inclusion of the nonlinear structural behavior [13,15] and practical applications of the method to the
seismic-resistant design of structures [38,39]. In these studies, the structure is designed (i.e. the cross-sectional dimensions
of the structure are determined) iteratively such that it resists its dependent or variable critical earthquake load without
failure. More recently, the critical excitation concept has been employed in identifying resonant ground motion records at a
site, and, also in defining proper design earthquakes for structures [40,41].

Finally, it may be noted that the framework adopted in this paper for modeling optimal earthquake loads on inelastic
structures is deterministic in nature and does not provide information on the probability level associated with the design
risk level. Hazard spectra in which earthquake loads are derived based on probability of occurrence or risk level, provide
robust and powerful tool for modeling earthquake loads. This approach is of interest but was not considered in the present
study.
6. Concluding remarks

The modeling of earthquake ground motions as design inputs for MDOF inelastic structures is studied. The earthquake
acceleration is expanded in terms of a Fourier series modulated by an envelope function. The coefficients of the series
representation are estimated such that the normalized inelastic inter-storey drift is maximized subjected to predefined
constraints. These constraints are taken to reflect known characteristics of recorded ground motions such as the
earthquake energy, upper and lower bounds on the Fourier spectra of the ground acceleration. The constraints, also, contain
upper limits on PGA, PGV and PGD. The framework adopted in deriving earthquake loads belongs to the class of engineering
models which do not account for source characteristics but aims to replicate gross features of recorded ground motions.
The material force–displacement behavior is modeled using hysteretic bilinear and elastic–plastic laws. The resulting
nonlinear optimization problem is solved by using the sequential quadratic optimization method.

It is shown that critical earthquake loads for the inelastic structure differ from those for the elastic structure. Similarly,
the time variation of the structure deformation differs from those of the elastic system. Unlike the elastic system, the
inelastic system dissipates energy through yielding and damping. The present study, also, examined the modeling of
damping using nonlinear Rayleigh model. The effect of variations in the damping ratio and also in the strain hardening ratio
on the derived critical acceleration and associated optimal inelastic deformation were also studied.

The proposed formulation was demonstrated with reference to the seismic inelastic response analysis of a two-storey
building frame. Given the complexity of engineering structures it is of interest to examine the formulation developed in
this paper for more complex structures. This can be achieved by combining nonlinear optimization techniques with
nonlinear finite element software.
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